采用逐步试探的方式,先从一个方向往前走,能进则进,不能进则退,尝试另外的路径。首先我们来分析一下国际象棋的规则,这些规则能够限制我们的前进,也就是我们前进途中的障碍物。一个皇后q(x,y)能被满足以下条件的皇后q(row,col)吃掉
1)x=row(在纵向不能有两个皇后)
2) y=col(横向)
3)col + row = y+x;(斜向正方向)
4) col - row = y-x;(斜向反方向)
遇到上述问题之一的时候,说明我们已经遇到了障碍,不能继续向前了。我们需要退回来,尝试其他路径。
我们将棋盘看作是一个8*8的数组,这样可以使用一种蛮干的思路去解决这个问题,这样我们就是在8*8=64个格子中取出8个的组合,C(64,80) = 4426165368,显然这个数非常大,在蛮干的基础上我们可以增加回溯,从第0列开始,我们逐列进行,从第0行到第7行找到一个不受任何已经现有皇后攻击的位置,而第五列,我们会发现找不到皇后的安全位置了,第五列的时候,摆放任何行都会上图所示已经存在的皇后的攻击,这时候我们认为我们撞了南墙了,是回头的时候了,我们后退一列,将原来摆放在第四列的皇后(3,4)拿走,从(3,4)这个位置开始,我们再第四列中寻找下一个安全位置为(7,4),再继续到第五列,发现第五列仍然没有安全位置,回溯到第四列,此时第四列也是一个死胡同了,我们再回溯到第三列,这样前进几步,回退一步,最终直到在第8列上找到一个安全位置(成功)或者第一列已经是死胡同,但是第8列仍然没有找到安全位置为止
总结一下,用回溯的方法解决8皇后问题的步骤为:
1)从第一列开始,为皇后找到安全位置,然后跳到下一列
2)如果在第n列出现死胡同,如果该列为第一列,棋局失败,否则后退到上一列,在进行回溯
3)如果在第8列上找到了安全位置,则棋局成功。
8个皇后都找到了安全位置代表棋局的成功,用一个长度为8的整数数组queenList代表成功摆放的8个皇后,数组索引代表棋盘的col向量,而数组的值为棋盘的row向
量,所以(row,col)的皇后可以表示为(queenList[col],col),如上图中的几个皇后可表示为:queenList[0] = 0; queenList[1] = 3; queenList[2] = 1; queenList[3] = 4; queenList = 2;bool IsSafe(int col,int row,int[] queenList)
{ //只检查前面的列
for (int tempCol = 0; tempCol < col; tempCol++)
{ int tempRow = queenList[tempCol];
if (tempRow == row) { //同一行 return false; } if (tempCol == col) { //同一列 return false; } if (tempRow - tempCol == row - col || tempRow + tempCol == row + col) { return false; } } return true; }
/// <summary>
/// 在第col列寻找安全的row值 /// </summary> /// <param name="queenList"></param> /// <param name="col"></param> /// <returns></returns> public bool PlaceQueue(int[] queenList, int col) { int row = 0; bool foundSafePos = false; if (col == 8) //结束标志 { //当处理完第8列的完成 foundSafePos = true; }
else
{ while (row < 8 && !foundSafePos) { if (IsSafe(col, row, queenList)) { //找到安全位置 queenList[col] = row; //找下一列的安全位置 foundSafePos = PlaceQueue(queenList, col + 1); if (!foundSafePos) { row++; } } else { row++; } } } return foundSafePos; }
调用方法:
static void Main(string[] args)
{